4,924 research outputs found

    Discovery of Water Vapor in the High-redshift Quasar APM 08279+5255 at z = 3.91

    Get PDF
    We report a detection of the excited 2_(20)-2_(11) rotational transition of para-H_2O in APM 08279+5255 using the IRAM Plateau de Bure Interferometer. At z = 3.91, this is the highest-redshift detection of interstellar water to date. From large velocity gradient modeling, we conclude that this transition is predominantly radiatively pumped and on its own does not provide a good estimate of the water abundance. However, additional water transitions are predicted to be detectable in this source, which would lead to an improved excitation model. We also present a sensitive upper limit for the hydrogen fluoride (HF) J = 1-0 absorption toward APM 08279+5255. While the face-on geometry of this source is not favorable for absorption studies, the lack of HF absorption is still puzzling and may be indicative of a lower fluorine abundance at z = 3.91 compared with the Galactic interstellar medium

    Jets associated with Z^0 boson production in heavy-ion collisions at the LHC

    Full text link
    The heavy ion program at the LHC will present unprecedented opportunities to probe hot QCD matter, that is, the quark gluon plasma (QGP). Among these exciting new probes are high energy partons associated with the production of a Z^0 boson, or Z^0 tagged jets. Once produced, Z^0 bosons are essentially unaffected by the strongly interacting medium produced in heavy-ion collisions, and therefore provide a powerful signal of the initial partonic energy and subsequent medium induced partonic energy loss. When compared with theory, experimental measurements of Z^0 tagged jets will help quantify the jet quenching properties of the QGP and discriminate between different partonic energy loss formalisms. In what follows, I discuss the advantages of tagged jets over leading particles, and present preliminary results of the production and suppression of Z^0 tagged jets in relativistic heavy-ion collisions at LHC energies using the Guylassy-Levai-Vitev (GLV) partonic energy loss formalism.Comment: To appear in the proceedings of the 2010 Winter Workshop on Nuclear Dynamics, which was held in Ocho Rios, Jamaica, mon

    Aggregation of chemotactic organisms in a differential flow

    Get PDF
    We study the effect of advection on the aggregation and pattern formation in chemotactic systems described by Keller-Segel type models. The evolution of small perturbations is studied analytically in the linear regime complemented by numerical simulations. We show that a uniform differential flow can significantly alter the spatial structure and dynamics of the chemotactic system. The flow leads to the formation of anisotropic aggregates that move following the direction of the flow, even when the chemotactic organisms are not directly advected by the flow. Sufficiently strong advection can stop the aggregation and coarsening process that is then restricted to the direction perpendicular to the flow

    ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo

    Full text link
    (abbreviated) We aim to study the inner wind of the well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have pointed toward a non-homogeneous mass-loss process: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and multi-concentric shells are detected beyond 1". We present the first ALMA Cycle 0 band 9 data around 650 GHz. The full-resolution data have a spatial resolution of 0".42x0".24, allowing us to study the morpho-kinematical structure within ~6". Results: We have detected 25 molecular lines. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and suggest that the wind velocity increases rapidly from about 5 R* almost reaching the terminal velocity at ~11 R*. The channel maps for the brighter lines show a complex structure; specifically for the 13CO J=6-5 line different arcs are detected within the first few arcseconds. The curved structure present in the PV map of the 13CO J=6-5 line can be explained by a spiral structure in the inner wind, probably induced by a binary companion. From modeling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of ~10-20 deg to the North-East and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that the companion is an unevolved low-mass main-sequence star. The ALMA data hence provide us for the first time with the crucial kinematical link between the dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic

    A Herschel/HIFI Legacy Survey of HF and H2O in the Galaxy: Probing Diffuse Molecular Cloud Chemistry

    Full text link
    We combine Herschel observations of a total of 12 sources to construct the most uniform survey of HF and H2O in our Galactic disk. Both molecules are detected in absorption along all sight lines. The high spectral resolution of the Heterodyne Instrument for the Far-Infrared (HIFI) allows us to compare the HF and H2O distributions in 47 diffuse cloud components sampling the disk. We find that the HF and H2O velocity distributions follow each other almost perfectly and establish that HF and H2O probe the same gas-phase volume. Our observations corroborate theoretical predictions that HF is a sensitive tracer of H2 in diffuse clouds, down to molecular fractions of only a few percent. Using HF to trace H2 in our sample, we find that the N(H2O)-to-N(HF) ratio shows a narrow distribution with a median value of 1.51. Our results further suggest that H2O might be used as a tracer of H2 -within a factor 2.5- in the diffuse interstellar medium. We show that the measured factor of ~2.5 variation around the median is driven by true local variations in the H2O abundance relative to H2 throughout the disk. The latter variability allows us to test our theoretical understanding of the chemistry of oxygen-bearing molecules in the diffuse gas. We show that both gas-phase and grain-surface chemistry are required to reproduce our H2O observations. This survey thus confirms that grain surface reactions can play a significant role in the chemistry occurring in the diffuse interstellar medium n_H < 1000 cm^-3.Comment: 53 pages; 12 figures, accepted for publication in ApJ main journa

    Fundamental Vibrational Transitions of HCl Detected in CRL 2136

    Full text link
    We would like to understand the chemistry of dense clouds and their hot cores more quantitatively by obtaining more complete knowledge of the chemical species present in them. We have obtained high-resolution infrared absorption spectroscopy at 3-4 um toward the bright infrared source CRL 2136. The fundamental vibration-rotation band of HCl has been detected within a dense cloud for the first time. The HCl is probably located in the warm compact circumstellar envelope or disk of CRL 2136. The fractional abundance of HCl is (4.9-8.7)e-8, indicating that approximately 20 % of the elemental chlorine is in gaseous HCl. The kinetic temperature of the absorbing gas is 250 K, half the value determined from infrared spectroscopy of 13CO and water. The percentage of chlorine in HCl is approximately that expected for gas at this temperature. The reason for the difference in temperatures between the various molecular species is unknown.Comment: 6 pages, 3 figures, A&A in pres

    The Ratio of Ortho- to Para-H2 in Photodissociation Regions

    Get PDF
    We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states, and the H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV-pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus, gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the ``square root'' part of the curve-of-growth, then the expected ratio of ortho and para vibrational line strengths is the square root of 3, ~ 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models which illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory (ISO) measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.Comment: 23 pages (including 5 figures), LaTeX, uses aaspp4.sty, accepted for publication in Ap

    The IRAM-30m line survey of the Horsehead PDR: I. CF+ as a tracer of C+ and a measure of the Fluorine abundance

    Full text link
    C+ is a key species in the interstellar medium but its 158 {\mu}m fine structure line cannot be observed from ground-based telescopes. Current models of fluorine chemistry predict that CF+ is the second most important fluorine reservoir, in regions where C+ is abundant. We detected the J = 1-0 and J = 2-1 rotational lines of CF+ with high signal-to-noise ratio towards the PDR and dense core positions in the Horsehead. Using a rotational diagram analysis, we derive a column density of N(CF+) = (1.5 - 2.0) \times 10^12 cm^-2. Because of the simple fluorine chemistry, the CF+ column density is proportional to the fluorine abundance. We thus infer the fluorine gas-phase abundance to be F/H = (0.6 - 1.5) \times 10^-8. Photochemical models indicate that CF+ is found in the layers where C+ is abundant. The emission arises in the UV illuminated skin of the nebula, tracing the outermost cloud layers. Indeed, CF+ and C+ are the only species observed to date in the Horsehead with a double peaked line profile caused by kinematics. We therefore propose that CF+, which is detectable from the ground, can be used as a proxy of the C+ layers.Comment: Accepted to A&A, 4 pages, 4 figures, 2 table

    The physics of Z0/γZ^0/\gamma^*-tagged jets at the LHC

    Full text link
    Electroweak bosons produced in conjunction with jets in high-energy collider experiments is one of the principle final-state channels that can be used to test the accuracy of perturbative Quantum Chromodynamics calculations and to assess the potential to uncover new physics through comparison between data and theory. In this paper we present results for the Z0/γZ^0/\gamma^*+jet production cross sections at the LHC at leading and next-to-leading orders. In proton-proton reactions we elucidate up to O(GFαs2){\cal O}(G_F\alpha_s^2) the constraints that jet tagging via the Z0/γZ^0/\gamma^* decay dileptons provides on the momentum distribution of jets. In nucleus-nucleus reactions we demonstrate that tagged jets can probe important aspects of the dynamics of quark and gluon propagation in hot and dense nuclear matter and characterize the properties of the medium-induced parton showers in ways not possible with more inclusive measurements. Finally, we present specific predictions for the anticipated suppression of the Z0/γZ^0/\gamma^*+jet production cross section in the quark-gluon plasma that is expected to be created in central lead-lead collisions at the LHC relative to the naive superposition of independent nucleon-nucleon scatterings.Comment: 16 pages, 13 figures, As published in Physical Review, minor tipos fixed, a couple of references adde
    corecore